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Abstract

For ethical and economic reasons, it is important to design
animal experiments well, to analyze the data correctly, and
to use the minimum number of animals necessary to achieve
the scientific objectives—but not so few as to miss biologi-
cally important effects or require unnecessary repetition of
experiments. Investigators are urged to consult a statistician
at the design stage and are reminded that no experiment
should ever be started without a clear idea of how the re-
sulting data are to be analyzed. These guidelines are pro-
vided to help biomedical research workers perform their
experiments efficiently and analyze their results so that they
can extract all useful information from the resulting data.
Among the topics discussed are the varying purposes of
experiments (e.g., exploratory vs. confirmatory); the experi-
mental unit; the necessity of recording full experimental
details (e.g., species, sex, age, microbiological status, strain
and source of animals, and husbandry conditions); assigning
experimental units to treatments using randomization; other
aspects of the experiment (e.g., timing of measurements);
using formal experimental designs (e.g., completely ran-
domized and randomized block); estimating the size of the
experiment using power and sample size calculations;
screening raw data for obvious errors; using the t-test or
analysis of variance for parametric analysis; and effective
design of graphical data.

Key Words: animal experiments; experimental design; sta-
tistics; variation

Introduction

Experiments using laboratory animals should be well
designed, efficiently executed, correctly analyzed,
clearly presented, and correctly interpreted if they are

to be ethically acceptable. Unfortunately, surveys of pub-
lished papers reveal that many fall short of this ideal, and in
some cases, the conclusions are not even supported by the
data (Festing 1994; Festing and Lovell 1995, 1996; Mc-

Cance 1995). This situation is unethical and results in a
waste of scientific resources. In contrast, high-quality meth-
ods will help to ensure that the results are scientifically
reliable and will not mislead other researchers.

The aim of these guidelines is to help investigators who
use animals ensure that their research is performed effi-
ciently and humanely, with the minimum number of
animals to achieve the scientific objectives of the study.
Some knowledge of statistics is assumed because most sci-
entists will have had some training in this discipline. How-
ever, scientists using animals should always have access to
a statistician who can help with unfamiliar or advanced
methods.

These guidelines and suggestions for further reading are
based partly on previously published guidelines for con-
tributors to medical journals (Altman et al. 2000) and for in
vitro experiments (Festing 2001). Although a useful set of
guidelines for “appropriate statistical practice” in toxicol-
ogy experiments has previously been published (Muller et
al., 1984), with a more extensive set of suggestions for the
design and analysis of carcinogenicity studies (Fairweather
et al. 1998), general guidelines aimed specifically at experi-
ments using laboratory animals in both academic and ap-
plied research do not appear to have been published
recently. However, a recent book covers in more detail
much of the ground discussed here (Festing et al. 2002).

Although responsibility for the quality of research rests
clearly with those who perform it, we believe journal editors
should ensure adequate peer review by individuals knowl-
edgeable in experimental design and statistics. They should
also ensure that there is a sufficiently full description of
animals, experimental designs, and statistical methods
used and should encourage the discussion of published pa-
pers through letters to the editor and, when possible, by
suggesting that authors publish their raw data electronically
(Altman 2002).

Ethical Considerations

The use of animals in scientific experiments likely to cause
pain, distress, or lasting harm generates important ethical
issues. Animals should be used only if the scientific objec-
tives are valid, there is no other alternative, and the cost to
the animals is not excessive. “Validity” in this case implies
that the experiment has a high probability of meeting the
stated objectives, and these objectives have a reasonable
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chance of contributing to human or animal welfare, possibly
in the long term.

The following “3Rs” of Russell and Burch (1959)
provide a framework for considering the humane use of
animals:

• Animals should be replaced by less sentient alternatives
such as invertebrates or in vitro methods whenever
possible.

• Experimental protocols should be refined to minimize
any adverse effects for each individual animal. For ex-
ample, appropriate anesthesia and analgesia should be
used for any surgical intervention. Death is not an ac-
ceptable endpoint if it is preceded by some hours of
acute distress, and humane endpoints should be used
whenever possible (Stokes 2000). Staff should be well
trained, and housing should be of a high standard with
appropriate environmental enrichment. Animals should
be protected from pathogens.

• The number of animals should be reduced to the mini-
mum consistent with achieving the scientific objectives
of the study, recognizing that important biological ef-
fects may be missed if too few animals are used. Some
thought also should be given to the required precision of
any outcomes to be measured. For example, chemicals
are classified into a number of groups on the basis of
their acute toxicity in animals. It may not be necessary
to obtain a highly precise estimate of the median lethal
dose (LD50 value) to classify them. A number of se-
quential experimental designs that use fewer animals
have been developed for this purpose (Lipnick et al.
1995; Rispin et al. 2002; Schlede et al. 1992). Ethical
review panels should also insist that any scientist who
does not have a good background in experimental de-
sign and statistics should consult a statistician.

General Principles

All research should be described in such a way that it could
be repeated elsewhere. Authors should clearly state the
following:

• The objectives of the research and/or the hypotheses to
be tested;

• The reason for choosing their particular animal model;
• The species, strain, source, and type of animal used;
• The details of each separate experiment being reported,

including the study design and the number of animals
used; and

• The statistical methods used for analysis.

Experiments and Surveys

An experiment is a procedure for collecting scientific data
on the response to an intervention in a systematic way to

maximize the chance of answering a question correctly
(confirmatory research) or to provide material for the
generation of new hypotheses (exploratory research). It
involves some treatment or other manipulation that is
under the control of the experimenter, and the aim is to
discover whether the treatment is causing a response in the
experimental subjects and/or to quantify such response. A
survey, in contrast, is an observational study used to find
associations between variables that the scientist cannot usu-
ally control. Any association may or may not be due to a
causal relation. These guidelines are concerned only with
experiments.

Experiments should be planned before they are started,
and this planning should include the statistical methods used
to assess the results. Sometimes a single experiment is
replicated in different laboratories or at different times.
However, if this replication is planned in advance and the
data are analyzed accordingly, it still represents a single
experiment.

Confirmatory and Exploratory Experiments

Confirmatory research normally involves formal testing of
one or more prespecified hypotheses. By contrast, explor-
atory research normally involves looking for patterns in the
data with less emphasis on formal testing of hypotheses.
Commonly, exploratory experiments involve many charac-
ters. For example, many microarray experiments in which
up or down regulation of many thousands of genes is as-
sayed in each animal could be classified as exploratory ex-
periments because the main purpose is usually to look for
patterns of response rather than to test some prespecified
hypotheses. There is frequently some overlap between these
two types of experiment. For example, an experiment may
be set up to test whether a compound produces a specific
effect on the body weight of rats—a confirmatory study.
However, data may also be collected on hematology and
clinical biochemistry, and exploratory investigations using
these data may suggest additional hypotheses to be tested in
future confirmatory experiments.

Investigations Involving Several Experiments

Scientific articles often report the results of several inde-
pendent experiments. When two or more experiments are
presented, they should be clearly distinguished and each
should be described fully. It is helpful to readers to number
the experiments.

Animals as Models of Humans or
Other Species

Laboratory animals are nearly always used as models or
surrogates of humans or other species. A model is a repre-
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sentation of the thing being modeled (the target). It must
have certain characteristics that resemble the target, but it
can be very different in other ways, some of which are of
little importance whereas others may be of great practical
importance. For example, the rabbit was used for many
years as a model of diabetic humans for assaying the po-
tency of insulin preparations because it was well established
that insulin reduces blood glucose levels in rabbits as well
as in humans. The fact that rabbits differ from humans in
many thousands of ways was irrelevant for this particular
application. This was a well-validated model, but it has now
been replaced with chemical methods.

Other models may be less well validated; and in some
cases it may be difficult, impossible, or impractical to vali-
date a given model. For example, it is widely assumed that
many industrial chemicals that are toxic at a given dose in
laboratory animals will also be toxic to humans at approxi-
mately the same dose after correcting for scale. However, it
is usually not possible to test this assumption. Clearly, the
validity of an animal model as a predictor of human re-
sponse depends on how closely the model resembles hu-
mans for the specific characters being investigated. Thus,
the validity of any model, including mathematical, in vitro,
and lower organism models, must be considered on a case-
by-case basis.

Need to Control Variation

After choosing a model, the aim of the experiment will be
to determine how it responds to the experimental treat-
ment(s). Models should be sensitive to the experimental
treatments by responding well, with minimal variation
among subjects treated alike. Uncontrolled variation,
whether caused by infection, genetics, or environmental or
age heterogeneity, reduces the power of an experiment to
detect treatment effects.

If mice or rats are being used, the use of isogenic strains
should be considered because they are usually more uniform
phenotypically than commonly used outbred stocks. Experi-
ments using such animals either should be more powerful
and able to detect smaller treatment responses or could use
fewer animals. When it is necessary to replicate an experi-
ment across a range of possible susceptibility phenotypes,
small numbers of animals of several different inbred strains
can be used in a factorial experimental design (see below)
without any substantial increase in total numbers (Festing
1995, 1997, 1999). The advantage of this design is that
the importance of genetic variation in response can be
quantified. Inbred strains have many other useful properties.
Because all individuals within a strain are genetically iden-
tical (apart possibly from a small number of recent muta-
tions), it is possible to build up a genetic profile of the genes
and alleles present in each strain. Such information can
be of value in planning and interpreting experiments.
Such strains remain genetically constant for many genera-
tions, and identification of individual strains is possible us-

ing genetic markers. There is a considerable literature
on the characteristics of the more common strains, so that
strains suitable for each project can be chosen according
to their known characteristics (Festing 1997, 1999;
<www.informatics.jax.org>).

Animals should be maintained in good environmental
conditions because animals under stress are likely to be
more variable than those maintained in optimum conditions
(Russell and Burch 1959). When a response is found in the
animal, its true relevance to humans is still not known.
Thus, clinical trials are still needed to discover the effects of
any proposed treatment in humans. However, in testing
toxic environmental chemicals, it is normally assumed that
humans respond in a similar way to animals, although this
assumption can rarely be tested. The animals should be
adequately described in the materials and methods or other
relevant section of the paper or report. The Appendix pro-
vides a checklist of the sort of information that might be
provided, depending on the individual study.

Experimental Design

The experimental design depends on the objectives of the
study. It should be planned in detail, including the devel-
opment of written protocols and consideration of the statis-
tical methods to be used, before starting work.

In principle, a well-designed experiment avoids bias and
is sufficiently powerful to be able to detect effects likely to
be of biological importance. It should not be so complicated
that mistakes are made in its execution. Virtually all animal
experiments should be done using one of the formal designs
described briefly below.

Experimental Unit

Each experiment involves a number of experimental units,
which can be assigned at random (see below) to a treatment.
The experimental unit should also be the unit of statistical
analysis. It must be possible, in principle, to assign any two
experimental units to different treatments. For this reason, if
the treatment is given in the diet and all animals in the same
cage therefore have the same diet, the cage of animals (not
the individual animals within the cage) is the experimental
unit. This situation can cause some problems. In studying
the effects of an infection, for example, it may be necessary
to house infected animals in one isolator and control ani-
mals in another. Strictly, the isolator is then the experimen-
tal unit because it was the entity assigned to the treatment
and an analysis based on a comparison of individual in-
fected versus noninfected animals would be valid only with
the additional assumption (which should be explicitly
stated) that animals within a single isolator are no more or
no less alike than animals in different isolators. Although
individual animals are often the experimental units assigned
to the treatments, a crossover experimental design may in-
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volve assigning an animal to treatments X, Y, and Z se-
quentially in random order, in which case the experimental
unit is the animal for a period of time. Similarly, if cells
from an animal are cultured in a number of dishes that can
be assigned to different in vitro treatments, then the dish of
cells is the experimental unit.

Split-plot experimental designs have more than one type
of experimental unit. For example, cages each containing
two mice could be assigned at random to a number of di-
etary treatments (so the cage is the experimental unit for
comparing diets), and the mice within the cage may be
given one of two vitamin treatments by injection (so the
mice are experimental units for the vitamin effect). In each
case, the analysis should reflect the way the randomization
was done.

Randomization

Treatments should be assigned so that each experimental
unit has a known, often equal, probability of receiving a
given treatment. This process, termed randomization, is es-
sential because there are often sources of variation, known
or unknown, which could bias the results. Most statistical
packages for computers will produce random numbers
within a specified range, which can be used in assigning
experimental units to treatments. Some textbooks have
tables of random numbers designed for this purpose. Alter-
natively, treatment assignments can be written on pieces of
paper and drawn out of a bag or bowl for each experimental
unit (e.g., animal or cage). If possible, the randomization
method should ensure that there are predefined numbers in
each treatment group.

Note that the different treatment groups should be pro-
cessed identically throughout the whole experiment. For
example, measurements should be made at the same times.
Furthermore, animals of different treatment groups should
not be housed on different shelves or in different rooms
because the environments may be different (see Blinding
and Block Designs below).

Blinding

To avoid bias, experiments should be performed “blind”
with respect to the treatments when possible and particu-
larly when there is any subjective element in assessing the
results. After the randomized allocation of animals (or other
experimental unit) to the treatments, animals, samples, and
treatments should be coded until the data are analyzed. For
example, when an ingredient is administered in the diet, the
different diets can be coded with numbers and/or colors and
the cages can be similarly coded to ensure that the correct
diet is given to each cage. Animals can be numbered in
random order so that at the postmortem examination there
will be no indication of the treatment group. Pathologists
who read slides from toxicity experiments are often not

blinded with respect to treatment group, which can cause
problems in the interpretation of the results (Fairweather
et al. 1998).

Pilot Studies

Pilot studies, sometimes involving only a single animal, can
be used to test the logistics of a proposed experiment.
Slightly larger ones can provide estimates of the means and
standard deviations and possibly also some indication of
likely response, which can be used in a power analysis to
determine sample sizes of future experiments (see below).
However, if the pilot experiment is very small, these esti-
mates will be inaccurate.

Formal Experimental Designs

Several formal experimental designs are described in the
literature, and most experiments should use one of these
designs. The most common are completely randomized,
randomized block (see below), and factorial designs; how-
ever, Latin square, crossover, repeated measures, split-plot,
incomplete block, and sequential designs are also used.
These formal designs have been developed to take account
of special features and constraints of the experimental ma-
terial and the nature of the investigation. It is not possible to
describe all of the available experimental designs here. They
are described in many statistical textbooks.

Investigators are encouraged to name and describe fully
the design they used to enable readers to understand exactly
what was done. We also recommend including an explana-
tion of a nonstandard design, if used.

Within each type of design there is considerable flex-
ibility in terms of choice of treatments and experimental
conditions; however, standardized methods of statistical
analysis are usually available. In particular, when experi-
ments produce numerical data, they can often be analyzed
using some form of the analysis of variance (ANOVA1).

Completely randomized designs, in which animals (or
other experimental units) are assigned to treatments at ran-
dom, are widely used for animal experiments. The main
advantages are simplicity and tolerance of unequal numbers
in each group, although balanced numbers are less impor-
tant now that good statistical software is available for ana-
lyzing more complex designs with unequal numbers in each
group. However, simple randomization cannot take account
of heterogeneity of experimental material or variation (e.g.,
due to biological rhythms or environment), which cannot be
controlled over a period of time.

Randomized complete block designs are used to split an
experiment into a number of “mini-experiments” to increase

1Abbreviations used in this article: ANOVA, analysis of variance; DF,
degrees of freedom.
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precision and/or take account of some natural structure of
the experimental material. With large experiments, it may
not be possible to process all of the animals at the same time
or house them in the same environment, so it may be better
to divide the experiment into smaller blocks that can be
handled separately. Typically, a “block” will consist of one
or more animals (or other experimental units) that have been
assigned at random to each of the different treatment
groups. Thus, if there are six different treatments, a block
will consist of a multiple of six animals that have been
assigned at random to each of the treatments. Blocking thus
ensures balance of treatments across the variability repre-
sented by the blocks. It may sometimes be desirable to
perform within-litter experiments when, for example, com-
paring transgenic animals with wild-type ones, with each
litter being a block. Similarly, when the experimental ani-
mals differ excessively in age or weight, it may be best to
choose several groups of uniform animals and then assign
them to the treatments within the groups. Randomized block
designs are often more powerful than completely random-
ized designs, but their benefits depend on correct analysis,
using (usually) a two-way ANOVA without interaction.
Note that when there are only two treatments, the block size
is two and the resulting data can be analyzed using either a
paired t-test or the two-way ANOVA noted above, which
are equivalent.

Choice of Dependent Variable(s), Characters,
Traits, or Outcomes

Confirmatory experiments normally have one or a few out-
comes of interest, also known as dependent variables, which
are typically mentioned in the experimental hypotheses. For
example, the null hypothesis might be that the experimental
treatments do not affect body weight in rats. Ideally there
should be very few outcomes of primary interest, but some
toxicity experiments involve many dependent variables, any
of which may be altered by a toxic chemical. Exploratory
experiments often involve many outcomes, such as the
thousands of dependent variables in microarray experi-
ments. When there is a choice, quantitative (measurement)
data are better than qualitative data (e.g., counts) because
the required sample sizes are usually smaller. When there
are several correlated outcomes (e.g., organ weights), some
type of multivariate statistical analysis may be appropriate.

In some studies, scores such as 0, +, ++, and +++ are
used. Such “ordinal” data should normally be analyzed by
comparing the number in each category among the different
treatment groups, preferably taking the ordering into ac-
count. Converting scores to numerical values with means
and standard deviations is inappropriate.

Choice of Independent Variables
or Treatments

Experiments usually involve the deliberate alteration of
some treatment factor such as the dose level of a drug. The

treatments may include one or more “controls.” Negative
controls may be untreated animals or those treated with a
placebo without an active ingredient. The latter is normally
more appropriate, although it may be desirable to study both
the effect of the active agent and the vehicle, in which case
both types of control will be needed. Surgical studies may
involve sham-operated controls, which are treated in the
same way as the tested animals but without the final surgical
treatment.

Positive controls are sometimes used to ensure that the
experimental protocols were actually capable of detecting
an effect. Failure of these controls to respond might imply,
for example, that some of the apparatus was not working
correctly. Because these animals may suffer adverse effects,
and they may not be necessary to the hypothesis being
tested, small numbers may be adequate.

Dose levels should not be so high that they cause un-
necessary suffering or unwanted loss of animals. When dif-
ferent doses are being compared, three to approximately six
dose levels are usually adequate. If a dose-response relation
is being investigated, the dose levels (X-variable) should
cover a wide range to obtain a good estimate of the re-
sponse, although the response may not be linear over a wide
range. Dose levels are frequently chosen on a log 2 or log 10
scale. If the aim is to test for linearity, then more than two
dose levels must be used. If possible, we recommend using
dose levels that are equally spaced on some scale, which
may facilitate the statistical analysis. More details of choice
of dose levels and dilutions in biological assay are given by
Finney (1978).

Toxicologists often use fractions (e.g., half to a quarter
or less) of the maximum tolerated dose (the largest dose that
results in only minimal toxic effects) in long-term studies.
The scientific validity of using such high dose levels has
been questioned because the response to high levels of a
toxic chemical may be qualitatively different from the re-
sponse to low levels (Fairweather et al. 1998). The possi-
bility of exploring the effects of more than one factor (e.g.,
treatment, time, sex, or strain) using factorial designs (see
below) should be considered.

Uncontrolled (Random) Variables

In addition to the treatment variables, there may be a num-
ber of random variables that are uncontrollable yet may
need to be taken into account in designing an experiment
and analyzing the results. For example, circadian rhythms
may cause behavior measured in the morning to be different
from that measured in the afternoon. Similarly, the experi-
mental material may have some natural structure (e.g.,
members of a litter of mice may be more similar than ani-
mals of different litters). Measurements made by different
people or at different times may be slightly different, and
reagents may deteriorate over a period of time. If these
effects are likely to be large in relation to the outcomes
being investigated, it will be necessary to account for them
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at the design stage (e.g., using a randomized block, Latin
square, or other appropriate design) or at the time of the
statistical analysis (e.g., using covariance analysis).

Factorial Experiments

Factorial experiments have more than one type of treatment
or independent variable (e.g., a drug treatment and the sex
of the animals). The aim could be to learn whether there is
a response to a drug and whether it is the same in both sexes
(i.e., whether the factors interact with or potentiate each
other). These designs are often extremely powerful in that
they usually provide more information for a given size of
experiment than most single factor designs at the cost of
increased complexity in the statistical analysis. They are
described in most statistical texts (e.g., Cox 1958; Mont-
gomery 1997).

In some situations, a large number of factors that might
influence the results of an experiment can be studied effi-
ciently using more advanced factorial designs. For example,
in screening potential drugs, it may be desirable to choose a
suitable combination of variables (e.g., presence/absence of
the test compound; the sex, strain, age, and diet of the
animals; time after treatment; and method of measuring the
endpoint). If there were only two levels of each of these
variables, then there would be 27 � 128 treatment combi-
nations to be explored. Special methods are available for
designing such experiments without having to use exces-
sively large numbers of animals (Cox 1958: Cox and Reid
2000; Montgomery 1997). This type of design can also be
used to optimize experiments that are used repeatedly with
only minor changes in the treatments, such as in drug de-
velopment, when many different compounds are tested us-
ing the same animal model (Shaw et al. 2002).

Experiment Size

Deciding how large an experiment needs to be is of critical
importance because of the ethical implications of using ani-
mals in research. An experiment that is too small may miss
biologically important effects, whereas an experiment that
is too large wastes animals. Scientists are often asked to
justify the numbers of animals they propose to use as part of
the ethical review process.

Power Analysis

A power analysis is the most common way of determining
sample size. The appropriate sample size depends on a
mathematical relation between the following (described in
more detail below): the (1) effect size of interest, (2) stan-
dard deviation (for variables with a quantitative effect), (3)
chosen significance level, (4) chosen power, (5) alternative
hypothesis, (6) sample size. The investigator generally

specifies the first five of these items and these determine the
sample size. It is also possible to calculate the power or the
effect size if the sample size is fixed (e.g., as a result of
restricted resources). The formulae are complex; however,
several statistical packages offer power analysis for estimat-
ing sample sizes when estimating a single mean or propor-
tion, comparing two means or proportions, or comparing
means in an analysis of variance. There are also dedicated
packages (e.g., nQuery Advisor [Statistical Solutions, Cork,
UK; Elashoff 1997]), which have a much wider range of
analyses (Thomas 1997). A number of web sites also pro-
vide free power analysis calculations for the simpler situa-
tions, and the following sites are currently available:
<Http://ebook.stat.ucla.edu/cgi-bin/engine.cgi>; http://
www.math.yorku.ca/SCS/Demos/power/;> and <http://
hedwig.mgh.harvard.edu/quan_measur/para_quant.html>.
Sample size is considered in more detail by Dell and col-
leagues in this volume (2002), and Cohen (1988) provides
extensive tables and helpful discussion of methods.

Effect Size

Briefly, when only two groups are to be compared, the
effect size is the difference in means (for a quantitative
character) or proportions (for a qualitative, dead/alive char-
acter) that the investigator wants the experiment to be able
to detect. For example, the investigator could specify the
minimum difference in mean body weight between a control
group of rats and a treated group that would be of biological
importance and that he/she considers the experiment should
be able to detect. It is often convenient to express the effect
size “D” in units of standard deviations by dividing through
by the standard deviation (discussed below). D is a unitless
number that can be compared across different experiments
and/or with different outcomes. For example, if the standard
deviation of litter size in a particular colony of BALB/c
strain mice is 0.8 pups (with a mean of ∼ 5 pups) and an
experiment is to be set up to detect a difference in mean
litter size between treated and control groups of, for ex-
ample, 1.0 pups, then D � 1.0/0.8 � 1.25 standard devia-
tion units. If the standard deviation of the total number of
pups weaned per cage in a 6-mo breeding cycle is 10 pups
(with a mean of ∼ 55 pups) and the experiment is set up to
detect a difference between a control group and a treated
group of 5.0 pups, then D � 5/10 � 0.5. This effect size is
smaller, so would require a larger experiment than the
change in litter size would require. Similarly, if a control
group is expected to have, for example, 20% of spontaneous
tumors, and the compound is a suspected carcinogen, the
increase in the percentage of tumors in the treated group
(which would be important to be able to detect) must be
specified.

Standard Deviation

The standard deviation among experimental units appropri-
ate to the planned experimental design must be specified

Volume 43, Number 4 2002 249



(for quantitative characters). For a randomized block or
crossover design the appropriate estimate will usually be the
square root of the error mean square from an analysis of
variance conducted on a previous experiment. When no
previous study has been done, a pilot study may be used,
although the estimate will not be reliable if the pilot study is
very small.

Significance Level

The significance level is the chance of obtaining a false-
positive result due to sampling error (known as a Type I
error). It is usually set at 5%, although lower levels are
sometimes specified.

Power

The power of an experiment is the chance that it will detect
the specified effect size for the given significance level and
standard deviation and be considered statistically signifi-
cant. Choice of a power level is somewhat arbitrary and
usually ranges from 80 to 95%. However, when testing
some vaccines for virulence, a power as high as 99% may be
specified because of the serious consequences of failure to
detect a virulent batch. Note that (1-power) is the chance of
a false-negative result, also known as a Type II error.

Alternative Hypothesis

The alternative hypothesis is usually that two means or pro-
portions differ, leading to a two-tailed test; but occasionally,
the direction of the difference is specified, leading to a
one-tailed test. A slightly larger sample size is required for
a two-tailed test.

Sample Size

The sample size is usually what needs to be determined, so
all of the other quantities listed above should be specified.
However, there are occasions when the sample size is fixed
and the aim is to determine the power or effect size, given
sample size.

Estimated sample sizes for an experiment involving two
groups with measurement data that would be analyzed using
a two-sample t-test are given in Table 1 as a function of D
(see above). For the two examples above, D was 1.25 for the
litter size effect, which would require approximately 14
cages in each group; whereas for the total production, ex-
ample D was 0.5, which would require approximately 86
cages in each group.

When experiments are set up to compare two propor-
tions using a chi-squared test the effect size is the difference
in the proportion of “successes” in the two groups and the
standard deviation is specified by the two proportions. In
Table 2 are shown the estimated number required in each
group to compare two proportions for various proportions
ranging from 0.2 to 0.8 assuming a power of 90%, a sig-

nificance level of 5%, and a two-sided test. Note that larger
sample sizes are required to detect a given difference be-
tween two proportions if they are both high or low (i.e., less
than 0.3 or more than 0.7) than if they are near 0.5.

Power analysis can also be used to estimate the required
sample sizes for estimating parameters such as a mean, a
regression coefficient, survival, or a genetic linkage (recom-
bination proportion) with a specified confidence interval,
although dedicated power analysis software may be needed
for these more advanced calculations. Note that large num-
bers of animals are needed to estimate genetic linkage be-
tween tightly linked genetic markers if a narrow confidence

Table 2 Number required in each group for
comparing two proportions (based on a normal
approximation of the binomial distribution) with a
significance level of 0.05 and a power of 90%

Proportion in
each group 0.2 0.3 0.4 0.5 0.6 0.7

0.2 —
0.3 392 —
0.4 109 477 —
0.5 52 124 519 —
0.6 90 56 130 519 —
0.7 19a 31 56 124 477 —
0.8 13a 19a 30 52 109 392

aAssumptions may lead to some inaccuracy.

Table 1 Sample size as a function of Da for a
two-sample t-test comparison assuming a
significance level of 5%, a power of 90%, and a
two-sided test

D No. per group

0.2 527
0.3 235
0.4 133
0.5 86
0.6 60
0.7 44
0.8 34
0.9 27
1.0 23
1.2 16
1.4 12
1.6 10
1.8 8
2.0 7
2.5 5

aD = (difference in means)/(standard deviation)
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interval is wanted. However, several specialized approaches
to such studies exist (Silver 1995).

Resource Equation Method for Determining
Sample Size

When there is no information about the standard deviation
and/or it is difficult to specify an effect size, an alternative
method that depends on the law of diminishing returns has
been suggested (Mead 1988). This method may also be of
value for some exploratory experiments when testing hy-
potheses is not the main objective.

For quantitative characters that are analyzed using the
analysis of variance, it is suggested that the degrees of free-
dom (DF1) for the error term used to test the effect of the
variable should be approximately 10 to 20. With less than
10 DF, good returns can be expected from adding more
experimental units. However, with more than 20 DF, adding
additional units provides little extra information. This rule-
of-thumb method seems to work quite well for whole ani-
mal experiments, although it tends to assume quite large
effect sizes.

Statistical Analysis

The results of most experiments should be assessed by an
appropriate statistical analysis even though, in some cases,
the results are so clear-cut that it is obvious that any statis-
tical analysis would not alter the interpretation. The analysis
should reflect the purpose of the study. Thus, the goal of
an exploratory analysis is to identify patterns in the data
without much emphasis on hypothesis testing, the goal
of a confirmatory experiment is to test one or a few pre-
stated hypotheses, and experiments aimed at estimating a
parameter such as a genetic linkage require appropriate es-
timates and standard errors. The general aim, however, is to
extract all of the useful information present in the data in a
way that it can be interpreted, taking account of biological
variability and measurement error. It is particularly useful in
preventing unjustified claims about the effect of a treatment
when the results could probably be explained by sampling
variation. Note that it is possible for an effect to be statis-
tically significant but of little or no biological importance.
The materials and methods section should describe the sta-
tistical methods used in analysing the results. The aim
should be to “describe statistical methods with enough de-
tail to enable a knowledgeable reader with access to the
original data to verify the reported results” (ICMJE 2001—
<www.icmje.com>).

Examining the Raw Data

Raw data and data entered into statistical software should be
studied for consistency and any obvious transcription errors.

Graphical methods, which are available in most statistical
packages, are helpful, particularly if individual observations
can be seen clearly. “Outliers” should not be discarded un-
less there is independent evidence that the observation is
incorrect, such as a note taken at the time the observation
was recorded expressing doubt about its credibility. Exclu-
sion of any observations should be stated explicitly, with
reasons. It is sometimes useful to analyze the data with and
without the questionable data to learn whether they alter the
conclusions. A clear distinction must be made between
missing data (caused, for instance, by an animal dying pre-
maturely or being killed due to excessive suffering) and data
with a value of zero.

Thought should be given at the design stage to dealing
with unexpected deaths, particularly if they are related to the
treatments. Details will depend on the nature of the study
and the number of animals that die. For example, the death
of only one or two animals in a relatively large study may
have relatively little effect on the results. In some long-term
studies, it may be possible to replace animals that die early,
but this replacement is not usually practical when they die
late. In other cases, some useful information (e.g., body
weights and DNA) can be obtained from the carcasses, pro-
vided they are preserved. Treatment-related deaths may bias
some of the results. For example, experimental stress could
result in some of the smaller animals in one of the treatment
groups dying, thereby causing the average weight of the
group to appear heavier than it should be. In all cases, the
number and treatment groups of any animals that die should
be noted in the published paper or report. In principle, data
should be kept as “raw” as possible. For example, express-
ing some numbers as percentages of other numbers should
be avoided because it may complicate the statistical analysis
and interpretation of the results and/or reduce precision.

Quantitative Data: Parametric and
Nonparametric Methods

The method of statistical analysis depends on the purpose of
the study, the design of the experiment, and the nature of the
resulting data. For example, an analysis involving a test of
an hypothesis should not be used if the aim is to estimate the
slope of a regression line. Quantitative data are often sum-
marized in terms of the mean, “n” (the number of subjects),
and the standard deviation as a measure of variation. The
median, n, and the interquartile ranges (i.e., the 25th and
75th centiles) may be preferable for data that are clearly
skewed. Nonparametric methods are discussed separately
below.

Quantitative data can be analyzed using “parametric”
methods, such as the t-test for one or two groups or the
ANOVA for several groups, or using nonparametric meth-
ods such as the Mann-Whitney test. Parametric tests are
usually more versatile and powerful and so are preferred;
however, they depend on the assumptions that the residuals
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(i.e., deviation of each observation from its group mean)
have a normal distribution, that the variances are approxi-
mately the same in each group, and that the observations are
independent of each other. The first two of these assump-
tions should be investigated as part of the analysis by study-
ing the residuals using methods available in most statistical
software packages. A normal probability plot of the residu-
als will show whether the normality assumption is fulfilled
(Altman 1991). This type of plot should give a straight line
with a normal distribution of residuals. A plot of the fits
(estimated group means) versus the residuals will show
whether the variation is approximately the same in each
group. Both plots also tend to highlight any outliers. Ob-
servations must also be independent (i.e., the observations
within a treatment group must come from experimental
units, which could, in principle, have been assigned to dif-
ferent treatment groups). Thus, if the effect of different diets
on mouse body weight are to be compared using several
cages with, for example, five mice per cage, the metric to be
analyzed should be the mean of all animals in the cage—not
the individual mouse weights—because mice within the
cage cannot be assigned to different treatment groups, so
they are not statistically independent. If the number of mice
per cage varies, then this may need to be taken into account
in the statistical analysis.

Nesting

Where several observations can be made on an experimental
unit (e.g., weights of individual animals within a cage, as
above or randomly chosen microscope fields within histo-
logical sections from an animal), it may be important to
find out whether precision could be increased more effec-
tively by using more experimental units or more observa-
tions within each unit. In such situations, the observations
are said to be “nested” within the experimental units,
and several levels of nesting are possible. A nested ANOVA
is usually used with the aim being to estimate the “compo-
nents of variance” associated with each level of nesting
(Dixon and Massey 1983). When this information is com-
bined with the costs of experimental units and observations
within a unit, it is possible to estimate the best way to
increase precision. In general, extra replication is necessary
across the level of nesting with the most variation. Thus, if
there are large differences among scores of microscopic
fields within an animal, it will usually be better to sample
more fields than to use more animals, although this
sampling depends on the relative costs of animals and
observations.

Nesting may also involve a fixed effect. For example, a
number of animals may be assigned at random to some
treatment groups and the concentration of a metabolite may
then be measured in a number of different organs. A nested
statistical analysis can then be used to determine whether
there are differences among treatment means, whether there

are differences among named organs, and whether there is
an organ by treatment interaction. The analysis is somewhat
similar to that used for a split-plot design.

Transformations

If the variances are not the same in each group and/or
the residuals do not have a normal distribution, a scale
transformation may normalize the data. A logarithmic trans-
formation may be appropriate for data such as the concen-
tration of a substance, which is often skewed with a long tail
to the right. A logit transformation {loge(p/(1-p))} where p
is the proportion, will often correct percentages or propor-
tions in which there are many observations less than 0.2 or
greater than 0.8 (assuming the proportions cannot be < 0 or
> 1), and a square root transformation may be used on data
with a Poisson distribution involving counts when the mean
is less than about five.

Further details are given in most statistics textbooks. If
no suitable transformation can be found, a nonparametric
test can often be used (see below).

Multiple Comparisons

Student’s t-test should not be used to compare more than
two group means. It lacks power, and multiple testing in-
creases the chance of a false-positive result. When there are
two or more groups, and particularly with randomized block
or more complex designs, the ANOVA can be used initially
to test the overall hypothesis that there are no differences
among treatment means. If no significant differences are
found, then further comparisons of means should not be
done. When the ANOVA results are significant (e.g., at p <
0.05) and several groups are being compared, either post-
hoc comparisons or orthogonal contrasts can be used to
study differences among individual means.

A range of post-hoc comparison methods are available
that differ slightly in their properties. These include Dun-
nett’s test for comparing each mean with the control,
Tukey’s test, Fisher’s protected least-significant difference
test, Newman-Keuls test, and several others for comparing
all means. Large numbers of post-hoc comparisons should
be avoided because some of these tests are “conservative”
and fail to detect true differences (Type II errors) whereas
others may be too liberal and give false-positive results
(Type I errors). It is better to specify those few comparisons
of particular interest at the design stage. Authors should
state which tests have been used. Note that all of these tests
use the pooled within-group standard deviation obtained
from the ANOVA. The ANOVA followed by individual
t-tests to compare means, not using the pooled standard
deviation, is not acceptable because each test will lack
power due to the low precision of the estimates of individual
standard deviations.
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Group means can also be compared using so-called “or-
thogonal contrasts.” Depending on the types of treatment,
either this method can compare individual means or groups
of means or, if the treatments represent dose levels or time
and are equally spaced on some scale, these contrasts can be
used to test linearity and nonlinearity of response. Unfortu-
nately, the methods are available only in more advanced
statistical packages, although the calculations can be done
manually. More details are given by Montgomery (1997).

The best estimate of the pooled standard deviation is
obtained as the square root of the error mean square in the
ANOVA. Indeed, this is the only estimate of the standard
deviation that is available for a randomized block design.
Thus, when presenting means either in tables or graphically,
this estimate of the standard deviation should be used. It
will, of course, be the same for each group.

Several Dependent Variables

When there are several dependent variables (characters),
each can be analyzed separately. However, if the variables
are correlated, the analyses will not be independent of one
another. Thus, if sampling variation resulted in a false-
positive or false-negative result for one character, the same
thing may happen for another character. A multivariate sta-
tistical analysis such as principal components analysis could
be considered in such cases (Everitt and Dunn 2001).

Serial Measurements

Data on experimental subjects are sometimes collected se-
rially. For example, growth curves, response to pharmaceu-
tical or toxic agents, behavioral measurements, and output
from telemetric monitoring may involve repeated measure-
ment on individual animals. Although a repeated measures
ANOVA has sometimes been used to analyze such data, this
approach is best avoided because the results are difficult to
interpret and the assumptions underlying the analysis are
rarely met. Appropriate summary measures such as the
mean of the observations, the slope of a regression line
fitted to each individual, the time to reach a peak or the area
under the curve, depending on the type of observed re-
sponse, offer a better alternative that is easier to interpret
(Matthews et al. 1990), although other methods such as a
multivariate analysis are also available (Everitt 1995).

Nonparametric Tests

When the assumptions necessary for the t-test and the
ANOVA of approximately equal variation in each treatment
group and approximate normality of the residuals are not
valid and no scale transformation is available to correct the
heterogeneity of variance and/or non-normality, a nonpara-
metric test can usually be used to compare the equality of

population means or medians. For comparing two groups,
the Wilcoxon rank sum test and the Mann-Whitney test
(which are equivalent) constitute a nonparametric equiva-
lent of the two-sample t-test. For comparing several groups,
the Kruskal-Wallis is the nonparametric equivalent of the
one-way ANOVA. A nonparametric equivalent of a post-
hoc comparison can be used, provided the overall test is
significant (Sprent 1993). A version of the Wilcoxon test
can also be used as the nonparametric version of the paired
t-test for a randomized block design with two treatment
groups.

The Friedman test is the nonparametric equivalent of the
randomized block ANOVA for more than two treatment
groups. Several other nonparametric tests are appropriate
for particular circumstances, and they are described in most
statistics textbooks.

Correlation

The most common correlation coefficient is known more
formally as the product-moment correlation, or Pearson
correlation to distinguish it from several other types. It is
used for assessing the strength of the linear relation between
two numerical variables A and B. Both A and B are as-
sumed to be subject to sampling variation. It does not as-
sume that variation in A causes variation in B or vice versa.
The correlation can be shown graphically using a scatter
plot. Normally a best fitting line should not be shown. The
investigator who wishes to fit such a line should remember
that the line calculated from the regression of A on B will
normally be different from that due to the regression of B on
A. The usual hypothesis test is that the correlation is zero;
however, in some cases, it may be appropriate to test wheth-
er the correlation differs from some other defined value.
Note that a change of scale will alter the correlation coef-
ficient and that a nonlinear relation will result in a low
correlation even if the two variables are strongly associated.
In such circumstances, use of the correlation of ranks may
be more appropriate. There are several other forms of cor-
relation coefficient, depending on whether the variables are
measurements or ranks or are dichotomous.

Regression

Regression analysis can be used to quantify the relation
between two continuous variables X and Y, where variation
in X is presumed to cause variation in Y. Regression is thus
asymmetric with respect to X and Y. The X variable is
assumed to be measured without error. Linear regression
can be used to fit a straight line of the form Y � a + bX,
where a and b are constants that are estimated from the data
using the least-squares method. In this case, “a” (the inter-
cept) represents the value of Y when X is zero, and “b” is
the slope of the regression line. A positive value of b implies
that the slope rises from left to right, and a negative value
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implies that it declines. Confidence intervals can be ob-
tained for the slope and can be fitted around the regression
line to give, for example, a 95% confidence interval for the
mean value of Y for a given value of X. Prediction intervals
can also be fitted to give, for example, a 95% interval for the
variation of individual observations of Y for any given
value of X. When possible, it is important to quote R2,
which is interpreted as the proportion of the variability in
the data explained by regression. This may be low if the
X-variable does not have a reasonably large range. The
residual (error) variation from the ANOVA table should
also be quoted.

If animals are caged in groups and the X variable (e.g.,
the dose level of a test compound or a dietary ingredient) is
administered to whole cages, then the cage becomes the
experimental unit and the Y variable will be the mean of all
the animals in the cage. If the number of animals per cage
varies, then more weight can be given to cages with more
animals. A weighted regression analysis, which takes ac-
count of possible variation in the precision with which each
point is estimated, is available in many statistical packages.
Quadratic regression can be used to fit a curve to the data
points. Many other types of curve can be fitted, and some
have useful biological interpretations.

The effect of several independent X variables can be
evaluated simultaneously using multiple regression. Often
such an analysis is exploratory, with the aim of identifying
which variables are influential. Logistic regression can be
used to explore the relation between one or more predictor
variables and a binary (e.g., dead/alive) outcome.

Regression and the ANOVA are closely related so that
a regression of, for example, response on dose level can
sometimes be included as part of the ANOVA using or-
thogonal contrasts (Altman 1991; Dixon and Massey 1983;
Montgomery 1997). The usual statistical test in regression
analysis is of the null hypothesis that there is no linear
relation between X and Y. Other common tests are of
whether two regression lines have the same slope b and/or
the same intercept a. A test to determine whether there is a
quadratic relation would be a test of whether a quadratic
curve gives a significantly better fit than a straight line.

Categorical Data

Categorical data consist of counts of the number of units
with given attributes. These attributes can be described as
“nominal” when they have no natural order (e.g., the strain
or breed of the animals). They are described as “ordinal”
when they have a natural order such as low, medium, and
high dose levels or scores, which may also be defined nu-
merically. When there are two categories, the data are called
binary. Categorical data are often presented in the form of
frequency tables and/or as proportions or percentages.

Proportions or percentages should be accompanied by a
confidence interval (preferably) or standard error, and n
should be clearly indicated. The usual method of comparing

two or more proportions is a contingency table chi-squared
analysis, which tests the null hypothesis that rows and col-
umns are independent. The method is inaccurate if the num-
bers in some cells are very low. Fisher’s exact test can be
used in such cases. Other methods of analysis are available
and are described in some texts.

Presentation of the Results

When individual means are quoted, they should be accom-
panied by some measure of variation. Excess decimal
places, often produced by the computer, should be elimi-
nated. It is usually sufficient to quote means to three sig-
nificant digits (e.g., 11.4 or 0.128). Percentages can often be
rounded to the nearest whole number. If the aim is to de-
scribe the variation among individuals that contribute to the
mean, then the standard deviation should be given. Avoid
using the ± sign. When presenting means it is better to use
a designation such as “mean 9.6 (SD 2.1)” because it avoids
any confusion between standard deviation and standard er-
ror. When the aim is to show the precision of the mean, a
confidence interval (e.g., 9.6 [95% CI �7.2-12.0]) should
be used (preferably) or a standard error (e.g., 9.6 [SE 1.2]).
Actual observed p values should be quoted whenever pos-
sible, rather than using < or > signs, although if these values
are very low, a < sign can be used (e.g., p < 0.001). Lack of
statistical significance should not be used to claim that an
effect does not exist. Nonsignificance may be due to the
experiment being too small or the experimental material
being too variable.

When two means are compared, the size of the differ-
ence between them should be quoted together with a con-
fidence interval. When nonparametric analyses have been
done, it is more sensible to quote medians and, for example,
25 and 75% centiles indicating the interquartile range.
When proportions or percentages are given, a standard error
or confidence interval and n should also be given. When
proportions are compared, the confidence interval for the
difference (or ratio) should be supplied.

We advise showing tabulated means in columns rather
than rows because this arrangement makes it easier to com-
pare values. If the means have been compared using a t-test
or ANOVA and the standard deviations have been found not
to differ materially between groups, use of a pooled stan-
dard deviation may be more appropriate than showing the
standard deviations separately for each mean. The number
of observations should always be indicated.

Graphical Presentation of Data

Graphs are especially valuable to illustrate points that would
be difficult to explain in writing or in a table. Presentation
of a small number of means can often be done more clearly
and using less space using a table than a bar diagram. It is
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also easier to read numerical values off a table than to read
them off a graph.

Graphs showing individual points rather than bar charts
or graphs with error bars are strongly encouraged because
they provide a much clearer impression of the nature of the
data. For example, a dose-response curve with individual
points (Figure 1) provides a much clearer impression of
individual variation than the example in Figure 2, which
tends to give a false impression of uniformity at each dose
level.

When means have been compared statistically, it may be
better to indicate significant differences on the diagram,
rather than adding error bars. When error bars are shown on
graphs or bar diagrams, there should be a clear indication of
whether these are standard deviations, standard errors, or
confidence intervals (preferred), and the number of obser-
vations should be clearly indicated in the text or figure
caption. With more complex graphs, it may be better not to
use error bars but instead to summarize the data in an ac-
companying table. Regression lines should never be shown
without the data points; preferably, they should be shown
with a confidence interval and/or prediction interval.

Combining Data from Different
Studies: Meta-analysis

Sometimes answers to the same essential questions are
sought in several independent experiments or trials from

different investigators. Formal methods of “meta-analysis”
have been developed that attempt to combine the results of
different experiments taking account of sample sizes and
apparent quality of the data. Meta-analysis usually forms
only part of a systematic review to identify all relevant
studies (Egger et al. 2001). There are a number of difficul-
ties in doing such reviews, one of which is publication bias.
Many studies are published only if they give positive results
because journals are often reluctant to publish studies where
differences are not statistically significant. For example,
findings that some types of environmental enrichment ben-
efit laboratory mice are more likely to be published than
those that find there is no effect. Thus, if only published
studies are included in the meta-analysis, the case for envi-
ronmental enrichment might appear to be overwhelming.
Unfortunately, no mechanism exists for finding unpublished
data.

Despite this potential difficulty, bringing together all
relevant research evidence in a topic should be generally
encouraged. A key aspect of such review is to assess the
methodological quality of the individual studies. Meta-
analysis of the results from several studies may then be done
for those studies deemed to be scientifically reliable and
addressing the same question. Although various statistical
methods are available, meta-analysis may not be straight-
forward, however, especially for observational studies.

Use of Historical Data

The value of historical data depends on its quality and its
reliability. Many factors (e.g., strain, origin, associated mi-

Figure 1 Red blood cell counts in mice as a function of the dose
of chloramphenicol showing counts for individual mice with a line
connecting the mean count at each dose level. Note that this ex-
ample provides a better impression of the variability of the data
than Figure 2. Raw data from Festing MFW, Diamanti P, Turton
JA. 2001. Strain differences in haematological response to chlor-
amphenicol succinate in mice: Implications for toxicological re-
search. Food Chem Toxicol 39:375-383.

Figure 2 Same data as in Figure 1, but just showing the group
means and error bars of one standard error about each mean. This
type of presentation is not recommended as it tends to obscure
individual variability.
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croflora, housing, husbandry, and methods of measuring
each outcome) can influence individual results so that in
nearly all studies, contemporary controls are almost essen-
tial, and historical data, particularly from another laboratory
should be treated with considerable caution. Methods of
meta-analysis may be appropriate in some cases.

However, when similar experiments are performed re-
peatedly in the same laboratory, there will often be scope for
using historical data. For example, chemicals are often rou-
tinely tested to determine whether they produce micronuclei
in mice when given by injection. Usually a laboratory will
standardize on a single strain and sex of mice and use a
standard protocol that includes contemporary controls.
Quality control charts, often used in industry, provide one
method of using such data (Hayashi et al. 1994). In Figure
3 is shown a control chart of the mean number of micronu-
clei in 47 samples of five control mice collected over a
period of several months in one laboratory, with the last two
samples of mice treated with 35 mg/kg of 1,2-dimethyl-
hydrazine. The control chart shows the mean number of
micronuclei among the control samples with upper and
lower control limits. One of the samples of mice treated
with the 1,2-dimethylhydrazine clearly exceeds the upper
control limit and has been flagged by the computer. Careful
use of such techniques, which need further development for
use in a biological context, might mean that smaller sample
sizes could be used in each study.

Conclusions

The need for improved experimental design and statistical
analysis of animal experiments, if they are to be considered
ethically acceptable, has already been emphasized. How-
ever, a recent example re-emphasizes this. A meta-analysis
of 44 animal studies on fluid resuscitation (Roberts et al.
2002) reported that only two of the investigators stated how
the animals were allocated to the treatment groups, none of
them were sufficiently large to detect a halving in the risk of
death reliably, there was considerable scope for bias to enter
into the conclusions, and there was substantial heterogene-
ity in the results due to the method of bleeding. Presumably
the latter could have been detected using a factorial design
with bleeding method as a design factor. The authors con-
cluded that the odds ratios were impossible to interpret, and
they questioned whether these animal data were of any rel-
evance to human health care. If scientists are to have the
privilege of being allowed to do painful experiments on
animals, they must ensure that their experiments are beyond
criticism.
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Appendix

Specification of the Animals Used in
an Experiment

Scientific experiments should be repeatable, so it is impor-
tant that the animals, their environment, and their associated
micro-organisms are described as fully as possible (Obrink
and Rehbinder 1999). Often the descriptions of the animals
published in scientific papers are totally inadequate (Bois-
vert 1997). Scientists should also be aware that animals with
the same designation from different sources or from one
source at different times may be genetically different, and
that the microbiological status of animals can influence their
response to experimental treatments. The following check-
list is based largely on one proposed by Festing and van
Zutphen (1997). It should be used to help ensure that all
details of the animals relevant to a particular study are fully
described.

Specify in the paper as many as possible of the following:

Animals

Source: Species (with Latin name if not a common labora-
tory species), source, conservation status if wild, age and/or
body weight, sex.
Transportation: Length of acclimatization period
Genotype: The breed, strain, or stock name. Inbred strains,
mutants, transgenes, and clones should be described using
internationally accepted nomenclature when available (see
<www.informatics.jax.org> for mouse and rat nomenclature).
Any genetic quality assurance verifying the genotype
should be mentioned.
Microbiological status: Conventional, specified pathogen-
free (SPF), germfree/gnotobiotic. When possible, reference
should be made to some agreed-upon standards for micro-
biological characterization such as the FELASA standards
(<www.felasa.org>).

Environment

Housing: Type of housing including whether conventional,
barrier, isolator, or individually ventilated cages. Room
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temperature (with diurnal variation), humidity, ventilation,
light/dark periods, light intensity. Cage type, model,
material, type of floor (solid/mesh), type of bedding, fre-
quency of cage cleaning, number of animals per cage, cage
enrichments.
Diet: Type, composition, manufacturer, feeding regimen
(ad libitum, restricted, pair fed), method of sterilization.
Water: ad libitum, bottles or automatic, quality, sterilization.

Statistical Software

Many good statistical packages are now available, and the
choice will often depend on which packages are supported
by the particular research organization. Researchers are
strongly urged to use one of the dedicated statistical pack-
ages, rather than a spreadsheet. Such packages have a wider
range of statistical methods, the algorithms have usually
been optimized over a period of several years, and the
manuals often provide more help with the interpretation of
the results than is available with a spreadsheet. In most
cases, it is easy to paste material from a spreadsheet into a

statistical package, so raw data can be kept in the spread-
sheet if preferred.

Suggested Reading

There are numerous textbooks on statistics and experimen-
tal design. Most are directed at specific disciplines (e.g.,
agriculture, psychology, clinical medicine), but the methods
are general and applicable to animal experiments. Anyone
intending to continue with a research career should invest in
a personal copy of a good textbook, which they should be
able to consult for many years. A review of available text-
books is beyond the scope of this article, but the following
books that are quoted herein (and several others not quoted)
may be worth consulting, depending on the exact applica-
tion: Altman (1991), Cox (1958), Cox and Reid (2000),
Dixon and Massey (1983), Everitt and Dunn (2001), Festing
et al. (2002), Finney (1978), Maxwell and Delaney (1989),
Mead (1988), Montgomery (1997), Sprent (1993). Note that
more recent editions of some of these books may be avail-
able since publication of this issue of ILAR Journal.
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